Visualization

Chapter III: Visualization

Visualization in MeVisLab

Introduction

Images and data objects can be rendered in 2D and 3D and interacted with in several ways using a set of tools available through MeVisLab. In this chapter in particular, we will focus on simple image interaction with two- and three-dimensional visualizations.

View2D and View3D

An easy way to display data and images in 2D and 3D is by using the Modules View2D and View3D. What can be done with these viewers?

Example 1: Synchronous view of two images

Example 1: Synchronous view of two images

Introduction

In this example we like to use the module SynchroView2D to be able to inspect two different images simultaneously.

The module SynchroView2D provides two 2D viewers that are synchronized.

As in Tutorial Chapter 1 - Basic Mechanics of MeVisLab, the processed and the unprocessed image can be displayed simultaneously. Scrolling through one image automatically changes the slices of both viewers, so slices with the same slice number are shown in both images.

Example 2: Creating a magnifier

Example 2: Creating a magnifier

Introduction

Medical images are typically displayed in three different viewing directions (see image): coronal, axial and sagittal.

Using the Viewer OrthoView2D you are able to decide, which viewing direction you like to use. In addition to that, you have the opportunity to display all three orthogonal viewing directions simultaneously. Here, we like to display an image of the head in all three viewing directions and mark positions in the image.

Example 3: Image Overlays

Example 3: How to blend images over each other

Introduction

In this example we will show you how to blend a 2D image over another one. With the help of the module SoView2DOverlay we will create an overlay, which allows us to highlight all bones in the scan.

Steps to do

Develop your network

Start this example by adding the shown modules, connecting the modules to form a network and loading the example image Bone.tiff.

Example 4: Display 2D images in Open Inventor SoRenderArea

Example 4: Display images converted to Open Inventor scene objects

Introduction

In the previous example you learned how to use the module SoView2DOverlay together with a View2D. MeVisLab provides a whole family of SoView2D* modules (SoView2DOverlay, SoView2DRectangle, SoView2DGrid, …). All these modules create or interact with scene objects and are based on the module SoView2D, which can convert a voxel-image into a scene object. In this example, you will get to know some members of the SoView2D-family.

Example 5: Volume rendering and interactions

Example 5: Volume rendering and interactions

Introduction

In this example we like to convert a scan of a head into a 3D scene-object. The scene-object allows to add some textures, interactions and animations.

Steps to do

Develop your network

Implement the following network and open the image $(DemoDataPath)/BrainMultiModal/ProbandT1.tif.

SoGVRVolumeRenderer

SoGVRVolumeRenderer

The module SoGVRVolumeRenderer allows volume rendering of 3D and 4D images.

Example 6: MeVis Path Tracer

Example 6: MeVis Path Tracer

Introduction

The MeVis Path Tracer offers a Monte Carlo Path Tracing framework running on CUDA GPUs. It offers photorealistic rendering of volumes and meshes, physically based lightning with area lights and soft shadows and fully integrates into MeVisLab Open Inventor (camera, depth buffer, clipping planes, etc.).

PathTracer1

PathTracer1

Example 6.1: Volume Rendering vs. Path Tracer

Example 6.1: Volume Rendering vs. Path Tracer

Introduction

In this example you develop a network to show some differences between volume rendering and the MeVisLab Path Tracer. You will visualize the same scene using both 3D rendering techniques and some of the modules for path tracing.